💥 Gate廣場活動: #FST创作大赛# 💥
在 Gate廣場 發布 CandyDrop 第71期:CandyDrop x FreeStyle Classic Token (FST) 相關原創內容,即有機會瓜分 3,000 FST 獎勵!
📅 活動時間:2025年8月27日 – 9月2日
📌 參與方式:
發布原創內容,主題需與 FST 或 CandyDrop 活動相關
內容不少於 80 字
帖子添加話題: #FST创作大赛#
附上 CandyDrop 參與截圖
🏆 獎勵設置:
一等獎(1名):1,000 FST
二等獎(3名):500 FST/人
三等獎(5名):200 FST/人
📄 注意事項:
內容必須原創,禁止抄襲或刷量
獲獎者需完成 Gate 廣場身分認證
活動最終解釋權歸 Gate 所有
活動詳情連結: https://www.gate.com/announcements/article/46757
蘋果研究人員:主流AI模型仍無法達到AGI期望推理水平
Gate News bot 消息,蘋果研究人員在 6 月份發表的一篇名爲《思考的幻覺》的論文中指出,領先的人工智能 (AGI) 模型在推理方面仍存在困難,因此,開發通用人工智能 (AGI) 的競賽仍任重道遠。
文章指出,主流人工智能大型語言模型 (LLM)(例如 OpenAI 的 ChatGPT 和 Anthropic 的 Claude)的最新更新已包含大型推理模型 (LRM),但其基本功能、擴展特性和局限性“仍未得到充分理解”。
目前的評估主要側重於既定的數學和編碼基準,“強調最終答案的準確性”。然而,研究人員表示,這項評估並未深入了解人工智能模型的推理能力,與通用人工智能僅需幾年就能實現的預期形成了鮮明對比。
研究人員設計了不同的益智遊戲,以超越標準數學基準來測試克勞德·桑奈(Claude Sonnet)、OpenAI 的 o3-mini 和 o1 以及 DeepSeek-R1 和 V3 聊天機器人的“思考”和“非思考”變體。
他們發現,“前沿的邏輯推理模型(LRM)在超過一定復雜度時會面臨準確率的徹底崩潰”,無法有效地泛化推理,而且其優勢會隨着復雜度的上升而消失,這與人們對通用人工智能(AGI)能力的預期相反。
消息來源:Cointelegraph